# Schur's Lemma and Beyond 

Tamar Lichter Blanks

Rutgers University<br>Graduate Algebra and Representation Theory Seminar

April 7, 2021

Backstory

## BACKSTORY

Let $V$ be an absolutely irreducible and finite-dimensional representation of a group $G$ over a field $k$. If there is a nonzero quadratic form $q$ on $V$ that is invariant under $G$, then by Schur's Lemma $q$ is uniquely determined up to multiplication by an element of $k^{\times}$.

## Schur's Lemma for Group Representations

## Schur's Lemma for Group Representations

Schur's Lemma. Let $G$ be a group and let $\rho: G \rightarrow G L(V)$ and $\rho^{\prime}: G \rightarrow \mathrm{GL}\left(V^{\prime}\right)$ be two finite-dimensional, irreducible representations of $G$ over a field $k$.

## Schur's Lemma for Group Representations

$$
\begin{aligned}
& \varphi: v \rightarrow v \quad \text { linear } \\
& g \cdot \varphi(v)=\varphi(g(v) \quad \forall g \in G, v \in V
\end{aligned}
$$

Schur's Lemma. Let $G$ be a group and let $\rho: G \rightarrow G L(V)$ and $\rho^{\prime}: G \rightarrow \mathrm{GL}\left(V^{\prime}\right)$ be two finite-dimensional, irreducible representations of $G$ over a field $k$. Suppose $\varphi: V \rightarrow V^{\prime}$ is a homomorphism of $G$-representations, that is, $\varphi$ is linear and $\rho^{\prime}(g) \circ \varphi=\varphi \circ \rho(g)$ for all $g \in G$. Then:

## Schur's Lemma for Group Representations

Schur's Lemma. Let $G$ be a group and let $\rho: G \rightarrow G L(V)$ and $\rho^{\prime}: G \rightarrow \mathrm{GL}\left(V^{\prime}\right)$ be two finite-dimensional, irreducible representations of $G$ over a field $k$. Suppose $\varphi: V \rightarrow V^{\prime}$ is a homomorphism of $G$-representations, that is, $\varphi$ is linear and $\rho^{\prime}(g) \circ \varphi=\varphi \circ \rho(g)$ for all $g \in G$. Then:

A Either $\varphi$ is the zero map, or $\varphi$ is an isomorphism of representations.

## Schur's Lemma for Group Representations

Schur's Lemma. Let $G$ be a group and let $\rho: G \rightarrow G L(V)$ and $\rho^{\prime}: G \rightarrow \mathrm{GL}\left(V^{\prime}\right)$ be two finite-dimensional, irreducible representations of $G$ over a field $k$. Suppose $\varphi: V \rightarrow V^{\prime}$ is a homomorphism of $G$-representations, that is, $\varphi$ is linear and $\rho^{\prime}(g) \circ \varphi=\varphi \circ \rho(g)$ for all $g \in G$. Then:

A Either $\varphi$ is the zero map, or $\varphi$ is an isomorphism of representations.
в Suppose $k$ is algebraically closed, $V=V^{\prime}$, and $\rho=\rho^{\prime}$. Then $\varphi$ is a scalar multiple of the identity.


$$
\varphi=\lambda I=\left(\begin{array}{l}
\hat{\lambda} \cdot \lambda) \text { for some } \lambda \in k . ~ \text {. } \\
\end{array}\right.
$$

Proof of Schur's Lemma
 representations.
$V$ irred. $\Rightarrow$ only subreps of $V$ are 0 and $V$
$\operatorname{ker} \varphi \subseteq V$ is a subvep.

- $\varphi(v)=0 \Rightarrow \varphi(g, v)=g \cdot \varphi(v)=g \cdot 0=0$.
$\operatorname{im} \varphi \subseteq V^{\prime}$ is a subrep.

Proof of Schur's Lemma
(a) Either $\varphi: V \rightarrow V^{\prime}$ is the zero map, or $\varphi$ is an isomorphism of representations.

Ger $\varphi \leqslant v \Rightarrow$ her $\varphi=0$
in $\varphi g^{\prime} \Rightarrow \operatorname{in\varphi }=7$ or $V^{\prime}$.
Assume $\quad \varphi \neq 0$.

$$
\text { So ger } \varphi=0, \operatorname{im} \varphi=V^{\prime} \Rightarrow \varphi \text { is }
$$ an isth.

Proof of Schur's Lemma
(b) Suppose $k$ is algebraically closed, $V=V^{\prime}$, and $\rho=\rho^{\prime}$. Then $\varphi$ is a scalar multiple of the identity.

$$
\varphi: V \rightarrow V
$$

Lett $\hat{\lambda}$ an eigenvalue for $\varphi(k=\bar{L})$
Then $\varphi-\lambda I$ is a homim of $G$-reps:

$$
\begin{aligned}
& (\varphi-\lambda I)(g \cdot v)=\varphi(g \cdot v)-\lambda(g \cdot v) \\
& =g \cdot \varphi(v)-g \cdot(\lambda \cdot v)=g \cdot(\varphi-\lambda I)(v) .
\end{aligned}
$$

Schor's lemma (a) $\Rightarrow \varphi-\lambda I$ is an isp. or 0

$$
\Rightarrow \quad \varphi=\lambda I .
$$

## Quadratic Forms

Let $V$ be an absolutely irreducible and finite-dimensional representation of a group $G$ over a field $k$. If there is a nonzero quadratic form $q$ on $V$ that is invariant under $G$, then by Schur's Lemma $q$ is uniquely determined up to multiplication by an element of $k^{\times}$.

## Quadratic Forms

Let $V$ be an absolutely irreducible and finite-dimensional representation of a group $G$ over a field $k$. If there is a nonzero quadratic form $q$ on $V$ that is invariant under $G$, then by Schur's Lemma $q$ is uniquely determined up to multiplication by an element of $k^{\times}$.

$$
g \cdot(v \otimes \alpha)=g \cdot v \otimes \alpha
$$

■ $V$ is absolutely irreducible: means $V \otimes_{k} \bar{k}$ is irreducible

## Quadratic Forms

Let $V$ be an absolutely irreducible and finite-dimensional representation of a group $G$ over a field $k$. If there is a nonzero quadratic form $q$ on $V$ that is invariant under $G$, then by Schur's Lemma $q$ is uniquely determined up to multiplication by an element of $k^{\times}$.

■ $V$ is absolutely irreducible: means $V \otimes_{k} \bar{k}$ is irreducible

■ $q$ is invariant: means $q(g . v)=q(v)$ for all $v \in V, g \in G$

## Quadratic Forms

Let $V$ be an absolutely irreducible and finite-dimensional representation of a group $G$ over a field $k$. If there is a nonzero quadratic form $q$ on $V$ that is invariant under $G$, then by Schur's Lemma $q$ is uniquely determined up to multiplication by an element of $k^{\times}$.

■ $V$ is absolutely irreducible: means $V \otimes_{k} \bar{k}$ is irreducible

■ $q$ is invariant: means $q(g . v)=q(v)$ for all $v \in V, g \in G$

■ Claim: If $q^{\prime} \neq 0$ is invariant then $q=\lambda q^{\prime}$ for some $\lambda \in k^{\times}$

## Quadratic Forms

Claim: If $q^{\prime} \neq 0$ is invariant then $q=\lambda q^{\prime}$ for some $\lambda \in k^{\times}$.

## Quadratic Forms

$$
\begin{aligned}
& q(v)=b(v, v) \\
& \text { nt then } q=\lambda q^{\prime} \text { for some } \lambda \in k^{x} .
\end{aligned}
$$

■ Construct a homomorphism of $G$-representations $\varphi: V \rightarrow V$ such that $b(v,-)=b^{\prime}(\varphi(v),-)$ for all $v \in V$.

$$
b(v, w)=b^{\prime}(\varphi(v), w) \quad \forall w \in V .
$$

## Quadratic Forms

Claim: If $q^{\prime} \neq 0$ is invariant then $q=\lambda q^{\prime}$ for some $\lambda \in k^{\times}$.

■ Construct a homomorphism of $G$-representations $\varphi: V \rightarrow V$ such that $b(v,-)=b^{\prime}(\varphi(v),-)$ for all $v \in V$.

■ Schur's lemma (b) $\Longrightarrow \varphi \otimes_{k} \operatorname{id}_{\bar{k}}=\lambda /$ for some $\lambda \in \bar{k}$.

$$
\begin{aligned}
V_{\otimes_{k}} \bar{k} & \rightarrow V_{\otimes_{k}} \bar{k} \\
v \otimes \alpha & \mapsto \varphi(v) \otimes \alpha
\end{aligned}
$$

## Quadratic Forms

Claim: If $q^{\prime} \neq 0$ is invariant then $q=\lambda q^{\prime}$ for some $\lambda \in k^{\times}$.

■ Construct a homomorphism of $G$-representations $\varphi: V \rightarrow V$ such that $b(v,-)=b^{\prime}(\varphi(v),-)$ for all $v \in V$.

■ Schur's lemma (b) $\Longrightarrow \varphi \otimes_{k} \mathrm{id}_{\bar{k}}=\lambda I$ for some $\lambda \in \bar{k}$.

- Then $\lambda \in k$ and $\varphi=\lambda I$.


## Quadratic Forms

Claim: If $q^{\prime} \neq 0$ is invariant then $q=\lambda q^{\prime}$ for some $\lambda \in k^{\times}$.

■ Construct a homomorphism of $G$-representations $\varphi: V \rightarrow V$ such that $b(v,-)=b^{\prime}(\varphi(v),-)$ for all $v \in V$.

■ Schur's lemma (b) $\Longrightarrow \varphi \otimes_{k} \operatorname{id}_{\bar{k}}=\lambda /$ for some $\lambda \in \bar{k}$.

- Then $\lambda \in k$ and $\varphi=\lambda I . \quad q(v)=b(v, v)=b^{\prime}(\varphi(v), v)$
- So $q=\lambda q^{\prime}$.

$$
\begin{aligned}
=b^{\prime}(\lambda v, v) & =\lambda b^{\prime}(v, v) \\
& =\lambda q(v) .
\end{aligned}
$$

A Broader Perspective

## A Broader Perspective

■ Want a general framework for kernels, images, zero, and irreducible objects

## A Broader Perspective

■ Want a general framework for kernels, images, zero, and irreducible objects

■ Solution: category theory

## A Broader Perspective

■ Want a general framework for kernels, images, zero, and irreducible objects

■ Solution: category theory

- In particular, abelian categories


## Abelian Categories

## Abelian Categories

## Examples:

## Abelian Categories

Examples：
－Ab，category of abelian groups with gp howims

## Abelian Categories

## Examples:

- Ab, category of abelian groups
- $R$-Mod, category of left $R$-modules


## Abelian Categories

## Examples:

- Ab, category of abelian groups
- $R$-Mod, category of left $R$-modules
- Vect $_{k}$, category of vector spaces over $k$


## Abelian Categories

Examples:

- Ab, category of abelian groups
- $R$-Mod, category of left $R$-modules

■ Vect ${ }_{k}$, category of vector spaces over $k$

- $\operatorname{Shv}_{\mathrm{Ab}}(X)$, category of sheaves of abelian groups on $X$


## Abelian Categories

Examples:

- Ab, category of abelian groups

■ $R$-Mod, category of left $R$-modules

- Vect ${ }_{k}$, category of vector spaces over $k$
- $\operatorname{Shv}_{\mathrm{Ab}}(X)$, category of sheaves of abelian groups on $X$
- $\operatorname{Rep}_{\mathbb{C}}(G)$, category of complex representations of $G$


## Abelian Categories

## Abelian Categories

In an abelian category $\mathcal{A}$,

## Abelian Categories

In an abelian category $\mathcal{A}$,
■ $\operatorname{Hom}_{\mathcal{A}}(A, B)$ is an abelian group for any two objects $A, B$ (and composition distributes over addition) $\left(f+f^{\prime}\right) \circ g=f \circ g+f^{\prime} \circ g$ $h \circ\left(f+f^{\prime}\right)=h \circ f+h \circ f^{\prime}$

## Abelian Categories

In an abelian category $\mathcal{A}$,

- $\operatorname{Hom}_{\mathcal{A}}(A, B)$ is an abelian group for any two objects $A, B$ (and composition distributes over addition)
- $\mathcal{A}$ has a zero object


## Abelian Categories

In an abelian category $\mathcal{A}$,

- $\operatorname{Hom}_{\mathcal{A}}(A, B)$ is an abelian group for any two objects $A, B$ (and composition distributes over addition)
- $\mathcal{A}$ has a zero object
- Notions of kernel, cokernel $\rightsquigarrow$ image $=\operatorname{ker}(\operatorname{coker} \varphi)$


## Abelian Categories

In an abelian category $\mathcal{A}$,

- $\operatorname{Hom}_{\mathcal{A}}(A, B)$ is an abelian group for any two objects $A, B$ (and composition distributes over addition)
- $\mathcal{A}$ has a zero object
- Notions of kernel, cokernel $\rightsquigarrow$ image
- Notion of mononjoriverphism $\rightsquigarrow$ subobject $\rightsquigarrow$ simple/irreducible object


## Abelian Categories

In an abelian category $\mathcal{A}$,

- $\operatorname{Hom}_{\mathcal{A}}(A, B)$ is an abelian group for any two objects $A, B$ (and composition distributes over addition)
- $\mathcal{A}$ has a zero object

■ Notions of kernel, cokernel $\rightsquigarrow$ image
■ Notion of monomorphism $\rightsquigarrow$ subobject $\rightsquigarrow$ simple/irreducible object
Not the full definition!

A , objeds $A, B$, morphism $A \stackrel{\&}{\leftrightarrows}$
The eurvel of $f$ is $K \xrightarrow{i} A$ satisfying the following univ. prop:


## Schur＇s Lemma in an Abelian Category

## Schur's Lemma in an Abelian Category



Schur's Lemma. Let $A$ and $B$ be simple objects in an abelian category $\mathcal{A}$. Then any nonzero element $\varphi \in \operatorname{Hom}_{\mathcal{A}}(A, B)$ is an isomorphism.

Proof of Schur's Lemma

## Proof of Schur's Lemma

■ $A, B$ simple $\Longrightarrow$ no nontrivial subobjects

## Proof of Schur's Lemma

■ $A, B$ simple $\Longrightarrow$ no nontrivial subobjects

■ $\operatorname{ker} \varphi \hookrightarrow A$ and $\operatorname{im} \varphi \hookrightarrow B$ are subobjects

## Proof of Schur's Lemma

■ $A, B$ simple $\Longrightarrow$ no nontrivial subobjects

■ $\operatorname{ker} \varphi \hookrightarrow A$ and $\operatorname{im} \varphi \hookrightarrow B$ are subobjects

■ Since $\varphi \neq 0 \in \operatorname{Hom}(A, B)$, we have $\operatorname{ker} \varphi=0$ and $\operatorname{im} \varphi=B$

## Proof of Schur's Lemma

- $A, B$ simple $\Longrightarrow$ no nontrivial subobjects

■ $\operatorname{ker} \varphi \hookrightarrow A$ and $\operatorname{im} \varphi \hookrightarrow B$ are subobjects

■ Since $\varphi \neq 0 \in \operatorname{Hom}(A, B)$, we have $\operatorname{ker} \varphi=0$ and $\operatorname{im} \varphi=B$

- Using some more properties of abelian categories, we can conclude that $\varphi$ is an isomorphism.


## Aside: Division Rings

## Aside: Division Rings

$$
\text { Div ring } D: \forall d \in D \quad \exists d^{-1} \in D
$$

Corollary. If $A$ is a simple object in an abelian category, then $\operatorname{End}(A)=\operatorname{Hom}(A, A)$ is a division ring.

## Aside: Division Rings

Corollary. If $A$ is a simple object in an abelian category, then $\operatorname{End}(A)=\operatorname{Hom}(A, A)$ is a division ring.

Proof.

## Aside: Division Rings

Corollary. If $A$ is a simple object in an abelian category, then $\operatorname{End}(A)=\operatorname{Hom}(A, A)$ is a division ring.

## Proof

- Ring:


## Aside: Division Rings

Corollary. If $A$ is a simple object in an abelian category, then $\operatorname{End}(A)=\operatorname{Hom}(A, A)$ is a division ring.

## Proof

- Ring: $\operatorname{Hom}(A, A)$ is an abelian group, and composition (multiplication) distributes over addition. ( $\left.f+f^{\prime}\right) g=f g+f g^{\prime}$


## Aside: Division Rings

Corollary. If $A$ is a simple object in an abelian category, then $\operatorname{End}(A)=\operatorname{Hom}(A, A)$ is a division ring.

## Proof

- Ring: $\operatorname{Hom}(A, A)$ is an abelian group, and composition (multiplication) distributes over addition.
- Division:


## Aside: Division Rings

Corollary. If $A$ is a simple object in an abelian category, then $\operatorname{End}(A)=\operatorname{Hom}(A, A)$ is a division ring.

## Proof.

- Ring: $\operatorname{Hom}(A, A)$ is an abelian group, and composition (multiplication) distributes over addition.
■ Division: Every nonzero element $\varphi \in \operatorname{Hom}(A, A)$ is invertible by Schur's Lemma.

$$
\text { have } \varphi-1
$$

## Aside: Division Rings

Corollary. If $A$ is a simple object in an abelian category, then $\operatorname{End}(A)=\operatorname{Hom}(A, A)$ is a division ring.

## Proof.

- Ring: $\operatorname{Hom}(A, A)$ is an abelian group, and composition (multiplication) distributes over addition.
■ Division: Every nonzero element $\varphi \in \operatorname{Hom}(A, A)$ is invertible by Schur's Lemma.

So $A$ determines an element in a Brauer group!

Example: Stable Sheaves

## Example: Stable Sheaves

See Huybrechts and Lehn, The Geometry of Moduli Spaces of Sheaves. (Don't rely on these details!)

## Example: Stable Sheaves

See Huybrechts and Lehn, The Geometry of Moduli Spaces of Sheaves.

- $X$ a Noetherian projective scheme over a field $k$


## Example: Stable Sheaves

See Huybrechts and Lehn, The Geometry of Moduli Spaces of Sheaves.

- $X$ a Noetherian projective scheme over a field $k$
- $E$ a coherent sheaf on $X, \operatorname{dim} E=\operatorname{dim} X$

$$
\begin{aligned}
& \operatorname{dim} \underbrace{\operatorname{supp}(E)}_{\left\{x \in X \backslash E_{x} \neq 0\right\}}
\end{aligned}
$$

## Example: Stable Sheaves

See Huybrechts and Lehn, The Geometry of Moduli Spaces of Sheaves.

- $X$ a Noetherian projective scheme over a field $k$
- $E$ a coherent sheaf on $X, \operatorname{dim} E=\operatorname{dim} X$
- Can define the reduced Hilbert polynomial $p(E)$ rational


## Example: Stable Sheaves

See Huybrechts and Lehn, The Geometry of Moduli Spaces of Sheaves.

- $X$ a Noetherian projective scheme over a field $k$
- $E$ a coherent sheaf on $X, \operatorname{dim} E=\operatorname{dim} X$
- Can define the reduced Hilbert polynomial $p(E)$
- $E$ is semi-stable if $E$ is pure and $p(F) \leq p(E)$ for any proper subsheaf $F \subseteq E$

$$
\frac{\uparrow}{x^{3}+2 x+1} \leq x^{3}+3 x
$$

See Huybrechts and Lehn, The Geometry of Moduli Spaces of Sheaves.

- $X$ a Noetherian projective scheme over a field $k$
- $E$ a coherent sheaf on $X, \operatorname{dim} E=\operatorname{dim} X$
- Can define the reduced Hilbert polynomial $p(E)$
- $E$ is semi-stable if $E$ is pure and $p(F) \leq p(E)$ for any proper subsheaf $F \subseteq E$
- $E$ is stable if $E$ is pure and $p(F)<p(E)$ for any proper subsheaf $F \subseteq E$


## Example: Stable Sheaves

- $E$ is stable if $E$ is pure and $p(F)<p(E)$ for any proper subsheaf $F \subseteq E$


## Example: Stable Sheaves

- $E$ is stable if $E$ is pure and $p(F)<p(E)$ for any proper subsheaf $F \subseteq E$
- Category $\operatorname{Coh}(X)$ of coherent sheaves on $X$ is abelian


## Example: Stable Sheaves

- $E$ is stable if $E$ is pure and $p(F) \leqslant p(E)$ for any proper subsheaf $F \subseteq E$
- Category $\operatorname{Coh}(X)$ of coherent sheaves on $X$ is abelian
- Subcategory $\mathcal{C}(p)$ of $\operatorname{Coh}(X)$, of semi-stable sheaves with reduced Hilbert polynomial $p$, is abelian E sumistable

$$
p(E)=p
$$

## Example: Stable Sheaves

- $E$ is stable if $E$ is pure and $p(F)<p(E)$ for any proper subsheaf $F \subseteq E$
- Category $\operatorname{Coh}(X)$ of coherent sheaves on $X$ is abelian
- Subcategory $\mathcal{C}(p)$ of $\operatorname{Coh}(X)$, of semi-stable sheaves with reduced Hilbert polynomial $p$, is abelian
- Stable sheaves are simple objects in $\mathcal{C}(p)$

Example: Stable Sheaves

## Example: Stable Sheaves

■ Proposition. If $F, G$ are stable sheaves and $p(F)=p(G)$, then any non-trivial homomorphism $f: F \rightarrow G$ is an isomorphism.

## Example: Stable Sheaves

■ Proposition. If $F, G$ are stable sheaves and $p(F)=p(G)$, then any non-trivial homomorphism $f: F \rightarrow G$ is an isomorphism.

- Corollary. If $E$ is a stable sheaf, then $\operatorname{End}(E)$ is a division algebra over $k$.


## References

Freyd, P. (1964). Abelian Categories: An Introduction to the Theory of Functors. A Harper international edition. Harper \& Row.
Garibaldi, S. (2008). Orthogonal representations of twisted forms of $\mathrm{SL}_{2}$. Representation Theory of the American Mathematical Society, 12(17):435-446.
Huybrechts, D. and Lehn, M. (2010). The Geometry of Moduli Spaces of Sheaves. Cambridge Mathematical Library. Cambridge University Press.
Serre, J. (1996). Linear Representations of Finite Groups. Graduate Texts in Mathematics. Springer New York. Translated by L. L. Scott.
Weibel, C. A. (1994). An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics. Cambridge University Press.

