SCHUR'S LEMMA AND BEYOND

Tamar Lichter Blanks

Rutgers University Graduate Algebra and Representation Theory Seminar

April 7, 2021

BACKSTORY

BACKSTORY

Let V be an absolutely irreducible and finite-dimensional representation of a group G over a field k. If there is a nonzero quadratic form q on V that is invariant under G, then by Schur's Lemma q is uniquely determined up to multiplication by an element of k^{\times} .

Schur's Lemma for Group Representations

SCHUR'S LEMMA FOR GROUP REPRESENTATIONS

Schur's Lemma. Let G be a group and let $\rho: G \to GL(V)$ and $\rho': G \to GL(V')$ be two finite-dimensional, irreducible representations of G over a field k.

SCHUR'S LEMMA FOR GROUP REPRESENTATIONS

Schur's Lemma. Let G be a group and let $\rho \colon G \to \operatorname{GL}(V)$ and $\rho' \colon G \to \operatorname{GL}(V')$ be two finite-dimensional, irreducible representations of G over a field k. Suppose $\varphi \colon V \to V'$ is a homomorphism of G-representations, that is, φ is linear and $\rho'(g) \circ \varphi = \varphi \circ \rho(g)$ for all $g \in G$. Then:

Schur's Lemma for Group Representations

Schur's Lemma. Let G be a group and let $\rho \colon G \to \operatorname{GL}(V)$ and $\rho' \colon G \to \operatorname{GL}(V')$ be two finite-dimensional, irreducible representations of G over a field K. Suppose $G \colon V \to V'$ is a homomorphism of G-representations, that is, $G \colon G$ is linear and $G \colon G \to G$ for all $G \colon G$. Then:

A Either φ is the zero map, or φ is an isomorphism of representations.

SCHUR'S LEMMA FOR GROUP REPRESENTATIONS

Schur's Lemma. Let G be a group and let $\rho \colon G \to \operatorname{GL}(V)$ and $\rho' \colon G \to \operatorname{GL}(V')$ be two finite-dimensional, irreducible representations of G over a field K. Suppose $G \colon V \to V'$ is a homomorphism of G-representations, that is, $G \colon G$ is linear and $G \colon G \to G$ for all $G \colon G$. Then:

- A Either φ is the zero map, or φ is an isomorphism of representations.
- B Suppose k is algebraically closed, V = V', and $\rho = \rho'$. Then φ is a scalar multiple of the identity.

Proof of Schur's Lemma

(a) Either $\varphi\colon V\to V'$ is the zero map, or φ is an isomorphism of representations.

Virred.
$$\Rightarrow$$
 only subreps of V are 0 and V ker $P \subseteq V$ is a subrep.
 $P(V) = 0 \Rightarrow P(Q,V) = Q, P(V) = Q, 0 = 0$.
 $P(V) = V$ is a subrep.

Proof of Schur's Lemma

(a) Either $\varphi \colon V \to V'$ is the zero map, or φ is an isomorphism of representations.

her
$$4 \le V \Rightarrow \text{len } 4 = 0$$
 of V' .

Me $4 \le V' \Rightarrow \text{len } 4 = 76$ or V' .

Assume $4 \ne 0$.

So $\text{kei} 4 = 0$, $\text{im} 4 = V' \Rightarrow 4$ is an isom.

Proof of Schur's Lemma

(b) Suppose k is algebraically closed, V = V', and $\rho = \rho'$. Then φ is a scalar multiple of the identity.

Let
$$\Lambda$$
 be an eigenvalue for Ψ ($k=\overline{k}$)

Then $\Psi - \Lambda I$ is a homim of G -reps:

 $(\Psi - \Lambda I)(g, v) = \Psi(g, v) - \lambda(g, v)$
 $= g \cdot \Psi(v) - g \cdot (x \cdot v) = g \cdot (\Psi - \Lambda I)(v)$.

Schor's lemma (a) $\Rightarrow \Psi - \Lambda I$ is an ight. or 0
 $\Rightarrow \Psi = \Lambda I$.

Let V be an absolutely irreducible and finite-dimensional representation of a group G over a field k. If there is a nonzero quadratic form q on V that is invariant under G, then by Schur's Lemma q is uniquely determined up to multiplication by an element of k^{\times} .

Let V be an absolutely irreducible and finite-dimensional representation of a group G over a field k. If there is a nonzero quadratic form q on V that is invariant under G, then by Schur's Lemma q is uniquely determined up to multiplication by an element of k^{\times} .

■ V is absolutely irreducible: means $V \otimes_k \overline{k}$ is irreducible

Let V be an absolutely irreducible and finite-dimensional representation of a group G over a field k. If there is a nonzero quadratic form q on V that is invariant under G, then by Schur's Lemma q is uniquely determined up to multiplication by an element of k^{\times} .

- V is absolutely irreducible: means $V \otimes_k \overline{k}$ is irreducible
- lacksq q is invariant: means q(g.v)=q(v) for all $v\in V$, $g\in G$

Let V be an absolutely irreducible and finite-dimensional representation of a group G over a field k. If there is a nonzero quadratic form q on V that is invariant under G, then by Schur's Lemma q is uniquely determined up to multiplication by an element of k^{\times} .

- V is absolutely irreducible: means $V \otimes_k \overline{k}$ is irreducible
- lacksq q is invariant: means q(g.v)=q(v) for all $v\in V$, $g\in G$
- Claim: If $q' \neq 0$ is invariant then $q = \lambda q'$ for some $\lambda \in k^{\times}$

$$q(v)=b(v,v)$$

$$\gamma'(v)=b'(v,v)$$
 Claim: If $q'\neq 0$ is invariant then $q=\lambda q'$ for some $\lambda\in k^{\times}$.

■ Construct a homomorphism of *G*-representations $\varphi \colon V \to V$ such that $b(v, -) = b'(\varphi(v), -)$ for all $v \in V$.

- Construct a homomorphism of *G*-representations $\varphi \colon V \to V$ such that $b(v, -) = b'(\varphi(v), -)$ for all $v \in V$.
- Schur's lemma (b) $\Longrightarrow \varphi \otimes_k \operatorname{id}_{\overline{k}} = \lambda I$ for some $\lambda \in \overline{k}$.

- Construct a homomorphism of *G*-representations $\varphi \colon V \to V$ such that $b(v, -) = b'(\varphi(v), -)$ for all $v \in V$.
- Schur's lemma (b) $\Longrightarrow \varphi \otimes_k \operatorname{id}_{\overline{k}} = \lambda I$ for some $\lambda \in \overline{k}$.
- Then $\lambda \in k$ and $\varphi = \lambda I$.

- Construct a homomorphism of *G*-representations $\varphi \colon V \to V$ such that $b(v, -) = b'(\varphi(v), -)$ for all $v \in V$.
- Schur's lemma (b) $\Longrightarrow \varphi \otimes_k \operatorname{id}_{\overline{k}} = \lambda I$ for some $\lambda \in \overline{k}$.
- Then $\lambda \in k$ and $\varphi = \lambda I$. q(v) = b(v,v) = b(v,v)

■ Want a general framework for kernels, images, zero, and irreducible objects

- Want a general framework for kernels, images, zero, and irreducible objects
- Solution: category theory

- Want a general framework for kernels, images, zero, and irreducible objects
- Solution: category theory
- In particular, abelian categories

Examples:

■ Ab, category of abelian groups w'--- gr how'ns

- Ab, category of abelian groups
- *R*-Mod, category of left *R*-modules

- Ab, category of abelian groups
- *R*-Mod, category of left *R*-modules
- $Vect_k$, category of vector spaces over k

- Ab, category of abelian groups
- *R*-Mod, category of left *R*-modules
- $Vect_k$, category of vector spaces over k
- Shv_{Ab}(X), category of sheaves of abelian groups on X

- Ab, category of abelian groups
- \blacksquare R-Mod, category of left R-modules
- $Vect_k$, category of vector spaces over k
- Shv_{Ab}(X), category of sheaves of abelian groups on X
- Rep_C(G), category of complex representations of G

In an abelian category A,

In an abelian category A,

■ Hom_A(A, B) is an abelian group for any two objects A, B (and composition distributes over addition) $(f+f') \circ g = f \circ g + f' \circ g$ $h \circ (f+f') = h \circ f + h \circ f'$

In an abelian category A,

- $\operatorname{Hom}_{\mathcal{A}}(A, B)$ is an abelian group for any two objects A, B (and composition distributes over addition)
- lacksquare $\mathcal A$ has a zero object

In an abelian category A,

- $\operatorname{Hom}_{\mathcal{A}}(A, B)$ is an abelian group for any two objects A, B (and composition distributes over addition)
- \blacksquare \mathcal{A} has a zero object
- Notions of kernel, cokernel ~ image = \cer(coker)

ABELIAN CATEGORIES

In an abelian category A,

- $\operatorname{Hom}_{\mathcal{A}}(A, B)$ is an abelian group for any two objects A, B (and composition distributes over addition)
- \blacksquare \mathcal{A} has a zero object
- Notions of kernel, cokernel ~ image
- Notion of monomorphism → subobject → simple/irreducible object

ABELIAN CATEGORIES

In an abelian category A,

- $\operatorname{Hom}_{\mathcal{A}}(A, B)$ is an abelian group for any two objects A, B (and composition distributes over addition)
- \blacksquare \mathcal{A} has a zero object
- Notions of kernel, cokernel ~ image
- Notion of monomorphism → subobject → simple/irreducible object

Not the full definition!

KERNELS IN AN ABELIAN CATEGORY

Schur's Lemma in an Abelian Category

SCHUR'S LEMMA IN AN ABELIAN CATEGORY

Schur's Lemma. Let A and B be simple objects in an abelian category A. Then any nonzero element $\varphi \in \operatorname{Hom}_{\mathcal{A}}(A, B)$ is an isomorphism.

Proof of Schur's Lemma

Proof of Schur's Lemma

 \blacksquare A, B simple \Longrightarrow no nontrivial subobjects

PROOF OF SCHUR'S LEMMA

- \blacksquare A, B simple \Longrightarrow no nontrivial subobjects
- \blacksquare ker $\varphi \hookrightarrow A$ and im $\varphi \hookrightarrow B$ are subobjects

Proof of Schur's Lemma

- \blacksquare A, B simple \Longrightarrow no nontrivial subobjects
- \blacksquare ker $\varphi \hookrightarrow A$ and im $\varphi \hookrightarrow B$ are subobjects
- Since $\varphi \neq 0 \in \text{Hom}(A, B)$, we have $\ker \varphi = 0$ and $\text{im } \varphi = B$

Proof of Schur's Lemma

- \blacksquare A, B simple \Longrightarrow no nontrivial subobjects
- \blacksquare ker $\varphi \hookrightarrow A$ and im $\varphi \hookrightarrow B$ are subobjects
- Since $\varphi \neq 0 \in \text{Hom}(A, B)$, we have $\ker \varphi = 0$ and $\text{im } \varphi = B$
- Using some more properties of abelian categories, we can conclude that φ is an isomorphism.

Corollary. If A is a simple object in an abelian category, then End(A) = Hom(A, A) is a division ring.

Corollary. If A is a simple object in an abelian category, then End(A) = Hom(A, A) is a division ring.

Proof.

Corollary. If A is a simple object in an abelian category, then End(A) = Hom(A, A) is a division ring.

Proof.

■ Ring:

Corollary. If A is a simple object in an abelian category, then End(A) = Hom(A, A) is a division ring.

Proof.

■ Ring: Hom(A, A) is an abelian group, and composition (multiplication) distributes over addition. (f+f') g=fg+fg'

Corollary. If A is a simple object in an abelian category, then End(A) = Hom(A, A) is a division ring.

Proof.

- Ring: Hom(A, A) is an abelian group, and composition (multiplication) distributes over addition.
- Division:

Corollary. If A is a simple object in an abelian category, then End(A) = Hom(A, A) is a division ring.

Proof.

- Ring: Hom(A, A) is an abelian group, and composition (multiplication) distributes over addition.
- Division: Every nonzero element $\varphi \in \text{Hom}(A, A)$ is invertible by Schur's Lemma.

Corollary. If A is a simple object in an abelian category, then End(A) = Hom(A, A) is a division ring.

Proof.

- Ring: Hom(A, A) is an abelian group, and composition (multiplication) distributes over addition.
- Division: Every nonzero element $\varphi \in \text{Hom}(A, A)$ is invertible by Schur's Lemma.

So A determines an element in a Brauer group!

See Huybrechts and Lehn, *The Geometry of Moduli Spaces of Sheaves.* (Don't rely on these details!)

See Huybrechts and Lehn, *The Geometry of Moduli Spaces of Sheaves*.

 \blacksquare X a Noetherian projective scheme over a field k

- \blacksquare X a Noetherian projective scheme over a field k
- E a coherent sheaf on X, dim $E = \dim X$

- \blacksquare X a Noetherian projective scheme over a field k
- \blacksquare E a coherent sheaf on X, dim $E = \dim X$
- Can define the reduced Hilbert polynomial p(E) coefficients

Example: Stable Sheaves

- \blacksquare X a Noetherian projective scheme over a field k
- \blacksquare E a coherent sheaf on X, dim $E = \dim X$
- \blacksquare Can define the reduced Hilbert polynomial p(E)
- E is *semi-stable* if E is pure and $p(F) \le p(E)$ for any proper subsheaf $F \subseteq E$

$$\uparrow \\
\chi^3 + 2\chi + 1 \leq \chi^3 + 3\chi$$

- \blacksquare X a Noetherian projective scheme over a field k
- \blacksquare E a coherent sheaf on X, dim $E = \dim X$
- \blacksquare Can define the reduced Hilbert polynomial p(E)
- E is *semi-stable* if E is pure and $p(F) \leq p(E)$ for any proper subsheaf $F \subset E$
- E is *stable* if E is pure and p(F) < p(E) for any proper subsheaf $F \subset E$

■ E is *stable* if E is pure and p(F) < p(E) for any proper subsheaf $F \subseteq E$

- E is *stable* if E is pure and p(F) < p(E) for any proper subsheaf $F \subseteq E$
- \blacksquare Category Coh(X) of coherent sheaves on X is abelian

- _ semi
- E is *stable* if E is pure and p(F) < p(E) for any proper subsheaf $F \subseteq E$
- \blacksquare Category Coh(X) of coherent sheaves on X is abelian
- Subcategory C(p) of Coh(X), of semi-stable sheaves with reduced Hilbert polynomial p, is abelian E Sumistable

Example: Stable Sheaves

- E is *stable* if E is pure and p(F) < p(E) for any proper subsheaf $F \subseteq E$
- \blacksquare Category Coh(X) of coherent sheaves on X is abelian
- Subcategory C(p) of Coh(X), of semi-stable sheaves with reduced Hilbert polynomial p, is abelian
- Stable sheaves are simple objects in C(p)

■ **Proposition**. If F, G are stable sheaves and p(F) = p(G), then any non-trivial homomorphism $f: F \to G$ is an isomorphism.

- **Proposition**. If F, G are stable sheaves and p(F) = p(G), then any non-trivial homomorphism $f: F \to G$ is an isomorphism.
- Corollary. If E is a stable sheaf, then End(E) is a division algebra over k.

REFERENCES

- Freyd, P. (1964). Abelian Categories: An Introduction to the Theory of Functors. A Harper international edition. Harper & Row.
- Garibaldi, S. (2008). Orthogonal representations of twisted forms of SL₂. Representation Theory of the American Mathematical Society, 12(17):435–446.
- Huybrechts, D. and Lehn, M. (2010). *The Geometry of Moduli Spaces of Sheaves*. Cambridge Mathematical Library. Cambridge University Press.
- Serre, J. (1996). Linear Representations of Finite Groups. Graduate Texts in Mathematics. Springer New York. Translated by L. L. Scott.
- Weibel, C. A. (1994). *An Introduction to Homological Algebra*. Cambridge Studies in Advanced Mathematics. Cambridge University Press.